3 basic regular quotient singularity types and
4 irregular quotient singularity types
| Singularity type | Index |
|---|---|
| [12] | 6 |
| [8, 2, 2, 2, 2] | 6 |
| [2, 2, 2, 3, 2, 2, 2] | 6 |
| [2, 2, 2, 2, 4, 2, 2, 2, 2] | 6 |
| Basic singularity type | Second singularity type | Third singularity type | Index |
|---|---|---|---|
| [7, 7] | [7, 2, 7] | [7, 2, 2, 7] | 6 |
| [7, 3, 2, 2, 2, 2] | [7, 2, 3, 2, 2, 2, 2] | [7, 2, 2, 3, 2, 2, 2, 2] | 6 |
| [2, 2, 2, 2, 3, 3, 2, 2, 2, 2] | [2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2] | [2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2] | 6 |
Reference: R. Blache, "Two aspects of log terminal surface singularities", Abh. Math. Sem. Univ. Hamburg 64 (1994), 59-87